48

compute Il.

Modification

and Relocation

of FOCAL 65-E
Into Erasible
Prom

William C. Clements, Jr.

Dept. of Chemical & Metallurgical
Engineerin

The University of Alabama

P. O. Box 2662

University, Alabama 35486

After using FOCAL for awhile, I became interested
in storing the machine code in EPROM. Not only
would this eliminate much of the waiting for tapes
to load, but more important, it would free over 5K
of user RAM for other purposes such as storing
more FOCAL source code and variables, or for
graphics routines.

The relocation of FOCAL and execution of it from
PROM is not as straightforward as for some other
programs, because the machine code is self-modifying
in several places. Also, there are multitudes of data
bytes used for address pointers scattered through the
program, and these are in such a form that the
ordinary kind of relocation routine would not convert
them. Thanks to the excellent documentation supplied
with FOCAL, I was successful in relocating it in a
“clean’’, non self-modifying form. The code, together
with an initialization routine that sets up page zero
and other RAM locations used for user statements
and to make the code ‘“clean’’, fits neatly into three
2716’s with plenty of room left over for other
modifications such as tape load and save, ‘‘user’”
function, etc., which I have added to my version of
FOCAL as well.l The modifications which follow
are concerned with cleaning the code up for storage
in PROM, and pertain to FOCAL 65-E for the
KIM-1, obtained from the 6502 Program Exchange
in Reno, Nevada.

The first order of business in preparing FOCAL
for PROM is to get rid of the self-modifying
parts. The three places I found where FOCAL
modifies itself in the main code are at locs.
$2348-2353, $282C-283D, and $3408-3414. A fourth
place occurs in page zero, where it doesn’t
matter since page zero is always RAM in 6502

systems. The other places are easily fixed. I
borrowed a few locations from an obscure corner

of KIM’s on-board RAM to do it; neither KIM nor
FOCAL seems to mind. The changes are as follows:

2348 was 8C 52 23 change to 8C DE 17 STY DJADR

234E was 8C 53 23 change to 8C DF 17 STY DJADR + 1

2351 was 4G 00 00 change to 4C DD 17 JMP $17DD

282C was 8C 3C 28 change to 8C DB 17 STY DJADR!

2835 was 8D 3D 28 change to 8D DC 17 STA DJADR1 +1

283B was 6C 00 00 change to 4C DA 17 JMP $17DA

3408 was 8E 12 34 change to 8E E1 17 STX MOV11

340C was 8C 14 34 change to 8C E3 17 STY MOV22 +1

3411 was B5 00 change to 4C E0 17 JMP MOVIT

3413 was 95 00 change to EA NOP

Additional code needed in page 17 is:

17DA 6C 00 00 JMP (0000)

17DD 4C 00 00 JMP 0000

17E0 B5 00 MOVIT LDA(X) 00

17E2 95 00 STA(X) 00

17E4 4C 15 34 JMP 3415
The address overwriting now occurs in page 17 RAM
instead of in the main code, which can now be safely
put into PROM.

Before doing so, however, we must relocate it.
Note that relocation should not alter existing page
boundaries (see warning on p. 44 of FOCAL 65-E
Manual). This actually makes the job easier, because
only the high-order bytes of addresses and address-
words can be changed. Relocation then is accom-
plished by (a) adding the desired offset to the
third byte of all three-byte instructions which do not
reference page zero; (b) Offsetting the data words for
routines such as PUSH] and POP]J, the software
stack manipulators. These words are scattered here
and there through all the code. A listing of their
high-order halves is given in Table 1; they are
address words, so only the second byte is to be offset.
(c) Offsetting the high-order bytes of the address
tables at the end of the FOCAL code, which are at
hex locs. 34FA-3515, 3546-3557, 356A-356E,
3598-359C, 35A2-35A6, 35AC-35B0, 35B6-35BA,
35C0-35C4, and 35CA-35CE. (d) Adding the offset
to the IRQ-vector initialization byte at loc.
34AE (I date your cleverest relocation program to
find that one!).

A final change necessary to execute FOCAL
from PROM is to change the RAM allocation for
program statements and variables so it is located
in RAM, instead at the end of the machine code
to go in PROM. The original start of this allocation
is at loc. 35F3, but if you are going to PROM
your FOCAL I suggest you save some PROM loca-
tions by deleting the heading that is printed as if it
were line number 00.00 by the Write command. I
retained only the line number zero and a carriage
return in my version, since the program expects to
print something there. This saves twenty-seven
bytes of memory. In my system, I decided to start
the RAM storage for statements and data at loc.
4000, so initialization there is as follows:

August/September, 1980. Issue 3.

August/September, 1980. Issue 3. compute Il.) 49

4000 00 ;line number
4001 00 ;0f 00.00 1See 6502 User Notes, issue #16, and errata in issue #17.

4002 0D ;ASCII ‘CR’
4003 FE ;PBEG
4004 FF ;VEND

To tell FOCAL where to put its statements and
variables, some page zero locations need to be
changed:

002F was D4 35 change to 00 40 ;beginning of RAM allocation

0031 was F2 35 change to 03 40 ;start of user’s text

003E was F3 35 change to 04 40 ;start of variable list

0040 was F3 35 change to 04 40 ;start of variables for *‘eaase all”

0042 was F3 35 change to 04 40 ;end of variable list
The code to accomplish page zero and page 17 setup
and initialize the user RAM is given in Table 3. The
code begins at loc. 3677 instead of right after the
FOCAL code because I have some other modifica-
tions in between; the user will want to relocate this
to suit his system anyhow.

Table 1. Table of High-Order
Data Bytes Used by

POPJ and PUSH]J. Add

Offset to Relocate. Table 2. FOCAL Initialization

Hex Original

Location Contents 3677 A2 00 COLDST LDX $00 :Initialize table & instructions
2088 23 BD AO 36 LO0OP1 LDA(X) TABL1 ;at page zero

20B2 23 95 20 STA(X)

20D7 29 E8 INX

212F 21 EO BD CPX $BD :Initialize $17BA-$17E6 for
219E 21 DO F6 BNE LOOP1 ;removal of self-modifying code
21D0 23 A2 00 LDX $00 ;in FOCAL

21FE 23 BD 5D 37 LO0P2 LDA(X) TABL2

2440 2B 9D DA 17 STA(X) $17DA

2452 29 E8 INX

24BB 29 EO OD CPX $0D

2502 2B DO F5 BNE LOOP2 ;Initialize User RAM

2516 29 3690 A2 00 LDX $00 ;with line number

2533 29 BD 6A 37 LOOP3 LDA(X) TABL3 ;zero and data bytes

2546 29 9D 00 40 STA(X) $4000

256A 29 E8 INX

2574 23 E0 05 CPX $05 :Go to FOCAL cold start ,
25EB 29 DO F5 BNE LOOP3 ;page zero constants & code
29DC 29 369D 4C 00 20 JMP FOCAL

29E5 2D 36A0 contents of

245 28 : %FOCAL locs. soozo-} TABLL

2A5D 29 i $00DC go here N ;Table for patches to

2ABE 29 375¢C ;remove self-modifying

2B97 29 375D 6C 00 00 TABL2 ;code in FOCAL

2EFF 29 4C 00 00

2F7F 29 B5 00

2FA3 29 95 00

2FE8 29 4C 15 34 ;Line no.

300D 2B 367A 00 TABL3 ;of 00.00

309E 29 00 ;ASCII ‘CR’

316A 2B 0D ;PBEG -
3186 29 FE ;VEND

31A8 2.0 367E FF

34AE 2C)

